Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
and health_cos.csv
into R and assign to the variables drug_cos
and health_cos
respectively.drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
glimpse
to get a glimpse of the datadrug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "...
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order) ticker
, year
, and grossmargin
-Extract observations for 2018
-Assign output to drug_subset
For health_cos
select (in this order) ticker
, year
, revenue
, gp
, `industry
-Extract observations for 2018
-Assign output to health_subset
drug_subset
join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5.82e 9 3.91e 9 Drug Manufacturers - ~
2 PRGO 2018 0.387 4.73e 9 1.83e 9 Drug Manufacturers - ~
3 PFE 2018 0.79 5.36e10 4.24e10 Drug Manufacturers - ~
4 MYL 2018 0.35 1.14e10 4.00e 9 Drug Manufacturers - ~
5 MRK 2018 0.681 4.23e10 2.88e10 Drug Manufacturers - ~
6 LLY 2018 0.738 2.46e10 1.81e10 Drug Manufacturers - ~
7 JNJ 2018 0.668 8.16e10 5.45e10 Drug Manufacturers - ~
8 GILD 2018 0.781 2.21e10 1.73e10 Drug Manufacturers - ~
9 BMY 2018 0.71 2.26e10 1.60e10 Drug Manufacturers - ~
10 BIIB 2018 0.865 1.35e10 1.16e10 Drug Manufacturers - ~
11 AMGN 2018 0.827 2.37e10 1.96e10 Drug Manufacturers - ~
12 AGN 2018 0.861 1.58e10 1.36e10 Drug Manufacturers - ~
13 ABBV 2018 0.764 3.28e10 2.50e10 Drug Manufacturers - ~
Start with the drug_cos
data
Extract observations for the ticker MYL
from drug_cos
Assign output to the variable drug_cos_subset
drug_cos_subset <- drug_cos %>%
filter(ticker == "MYL")
Display drug_cos_subset
drug_cos_subset
# A tibble: 8 x 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MYL Myla~ United ~ 0.245 0.418 0.088 0.161 0.146
2 MYL Myla~ United ~ 0.244 0.428 0.094 0.163 0.184
3 MYL Myla~ United ~ 0.228 0.44 0.09 0.153 0.209
4 MYL Myla~ United ~ 0.242 0.457 0.12 0.169 0.283
5 MYL Myla~ United ~ 0.243 0.447 0.09 0.133 0.089
6 MYL Myla~ United ~ 0.19 0.424 0.043 0.052 0.044
7 MYL Myla~ United ~ 0.272 0.402 0.058 0.121 0.054
8 MYL Myla~ United ~ 0.258 0.35 0.031 0.074 0.028
# ... with 1 more variable: year <dbl>
Use left_join
to combine the rows and columns of drug_cos_subset
with the columns of health_cos
Assign the output to combo_df
combo_df <- drug_cos_subset %>%
left_join(health_cos)
Display combo_df
combo_df
# A tibble: 8 x 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 MYL Myla~ United ~ 0.245 0.418 0.088 0.161 0.146
2 MYL Myla~ United ~ 0.244 0.428 0.094 0.163 0.184
3 MYL Myla~ United ~ 0.228 0.44 0.09 0.153 0.209
4 MYL Myla~ United ~ 0.242 0.457 0.12 0.169 0.283
5 MYL Myla~ United ~ 0.243 0.447 0.09 0.133 0.089
6 MYL Myla~ United ~ 0.19 0.424 0.043 0.052 0.044
7 MYL Myla~ United ~ 0.272 0.402 0.058 0.121 0.054
8 MYL Myla~ United ~ 0.258 0.35 0.031 0.074 0.028
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
Assign the company name to co_name
co_name <- combo_df %>%
distinct(name) %>%
pull()
Assign the company location to co_location
co_location <- combo_df %>%
distinct(location) %>%
pull()
Assign the company location to co_industry
co_industry <- combo_df %>%
distinct(industry) %>%
pull()
Start with combo_df
Select variables (in this order): year
, grossmargin
, netmargin
, revenue
, gp
, netincome
Assign the output to combo_df_subset
combo_df_subset <- combo_df %>%
select(year, grossmargin, netmargin, revenue, gp, netincome)
Display combo_df_subset
combo_df_subset
# A tibble: 8 x 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6129825000 2563364000 536810000
2 2012 0.428 0.094 6796100000 2908300000 640900000
3 2013 0.44 0.09 6909100000 3040300000 623700000
4 2014 0.457 0.12 7719600000 3528000000 929400000
5 2015 0.447 0.09 9429300000 4216100000 847600000
6 2016 0.424 0.043 11076900000 4697000000 480000000
7 2017 0.402 0.058 11907700000 4783100000 696000000
8 2018 0.35 0.031 11433900000 4001600000 352500000
Create the variable grossmargin_check
to compare with the variable grossmargin
. They should be equal. grossmargin_check
= gp
/ revenue
Create the variable close_enough
to check that the absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001
combo_df_subset %>%
mutate(grossmargin_check = gp/revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6.13e 9 2.56e9 536810000
2 2012 0.428 0.094 6.80e 9 2.91e9 640900000
3 2013 0.44 0.09 6.91e 9 3.04e9 623700000
4 2014 0.457 0.12 7.72e 9 3.53e9 929400000
5 2015 0.447 0.09 9.43e 9 4.22e9 847600000
6 2016 0.424 0.043 1.11e10 4.70e9 480000000
7 2017 0.402 0.058 1.19e10 4.78e9 696000000
8 2018 0.35 0.031 1.14e10 4.00e9 352500000
# ... with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome/revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
year grossmargin netmargin revenue gp netincome netmargin_check
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.418 0.088 6.13e 9 2.56e9 536810000 0.0876
2 2012 0.428 0.094 6.80e 9 2.91e9 640900000 0.0943
3 2013 0.44 0.09 6.91e 9 3.04e9 623700000 0.0903
4 2014 0.457 0.12 7.72e 9 3.53e9 929400000 0.120
5 2015 0.447 0.09 9.43e 9 4.22e9 847600000 0.0899
6 2016 0.424 0.043 1.11e10 4.70e9 480000000 0.0433
7 2017 0.402 0.058 1.19e10 4.78e9 696000000 0.0584
8 2018 0.35 0.031 1.14e10 4.00e9 352500000 0.0308
# ... with 1 more variable: close_enough <lgl>
Use the health_cos data
For each industry calculate
mean_grossmargin_percent = mean(gp / revenue) * 100 median_grossmargin_percent = median(gp / revenue) * 100 min_grossmargin_percent = min(gp / revenue) * 100 max_grossmargin_percent = max(gp / revenue) * 100
Use the health_cos
data
Extract observations for the ticker ILMN
from health_cos
and assign to the variable health_cos_subset
health_cos_subset <- health_cos %>%
filter(ticker == "ILMN")
Display health_cos_subset
health_cos_subset
# A tibble: 8 x 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ILMN Illu~ 1.06e9 7.09e8 1.97e8 86628000 2.20e9 1120625000
2 ILMN Illu~ 1.15e9 7.74e8 2.31e8 151254000 2.57e9 1247504000
3 ILMN Illu~ 1.42e9 9.12e8 2.77e8 125308000 3.02e9 1485804000
4 ILMN Illu~ 1.86e9 1.30e9 3.88e8 353351000 3.34e9 1876842000
5 ILMN Illu~ 2.22e9 1.55e9 4.01e8 462000000 3.69e9 1839194000
6 ILMN Illu~ 2.40e9 1.67e9 5.04e8 454000000 4.28e9 2011000000
7 ILMN Illu~ 2.75e9 1.83e9 5.46e8 725000000 5.26e9 2508000000
8 ILMN Illu~ 3.33e9 2.30e9 6.23e8 826000000 6.96e9 3114000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
In the console, type ?distinct
. Go to the help pane to see what distinct
does In the console, type ?pull
. Go to the help pane to see what pull
does
health_cos_subset %>%
distinct(name) %>%
pull(name)
[1] "Illumina Inc"
Assign the output to co_name
co_name <- health_cos_subset %>%
distinct(name) %>%
pull(name)
The name of the company with ticker ILMN
is Illumina Inc
In following chuck
Assign the company’s industry group to the variable co_industry
co_industry <- health_cos_subset %>%
distinct(industry) %>%
pull()
-start with health_cos
THEN -group_by
industry
THEN -calculate the median research and development expenditure by industry -assign the output to df
8.Use glimpse
to glimpse the data for the plots
df %>% glimpse()
Rows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
-use ggplot
to initialize the chart -data is df
-the variable industry
is mapped to the x-axis -reorder it based on the value of med_rnd_rev
-the variable med_rnd_rev
is mapped to the y-axis -add a bar chart using geom_col
-use scale_y_continuous
to label y axis with a percent -use coord_flip()
to flip the coordinates -use labs
to add title, subtitle, and remove x and y-axes -use theme_ipsum()
from hrbrthemes package to improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev
))+
geom_col()+
scale_y_continuous(labels = scales::percent)+
coord_flip()+
labs(
title = "Median R&D Expenditures",
subtitle = "by industry as a percent of revenue from 2011 to 2018",
x = NULL, y = NULL)+
theme_ipsum()
ggsave(filename = "preview.png",
path = here::here("_posts", "2021-03-16-joining-data"))
-start with the data df -use arrange
to reorder med_rnd_rev
-use e_charts
to initialize a chart -the variable industry
is mapped to the x-axis -add a bar chart using e_bar
with the values of med_rnd_rev
-use e_flip_coords()
to flip the coordinates -use e_title
to add the title and subtitle -use e_legend
to remove the legends -use e_x_axis
to change format of labels on x-axis to percent -use e_y_axis
to remove lapels on the y-axis -use e_theme
to change the theme
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry,
) %>%
e_bar(
serie = med_rnd_rev,
name = "median"
) %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median Industry R&D Expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)
) %>%
e_y_axis(
show = FALSE
)