A short description of the post.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for the post.
Assign the location fo the file to file_csv
. The data should be in the same directory as this file
Read the data into R and assign it to ‘emissions’.
file_csv <- here("_posts",
"2021-03-02-reading-and-writing-data",
"co emissions per capita.csv")
emissions <- read_csv(file_csv)
emissions
.emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
emissions
data, THENuse clean_names
form the janitor package to make names easier to work with, Assign the output to tidy_emissions
, Show the first 10 rows of tidy_emissions
.
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# ... with 22,373 more rows
use filter
to extract rows with year == 1988
, THEN use skim
to calculate the descriptive statistics.
Name | Piped data |
Number of rows | 209 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 209 | 0 |
code | 12 | 0.94 | 3 | 8 | 0 | 197 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1988.00 | 0.00 | 1988.00 | 1988.00 | 1988.00 | 1988.00 | 1988.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 5.07 | 5.86 | 0.01 | 0.54 | 2.82 | 8.11 | 29.56 | ▇▃▁▁▁ |
start with tidy_emissions
then extract rows with year == 1988
and are missing a code.
# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1988 1.23
2 Asia <NA> 1988 1.98
3 Asia (excl. China & India) <NA> 1988 2.94
4 EU-27 <NA> 1988 9.07
5 EU-28 <NA> 1988 9.18
6 Europe <NA> 1988 10.9
7 Europe (excl. EU-27) <NA> 1988 13.4
8 Europe (excl. EU-28) <NA> 1988 14.2
9 North America <NA> 1988 13.8
10 North America (excl. USA) <NA> 1988 5.06
11 Oceania <NA> 1988 11.2
12 South America <NA> 1988 2.04
tidy_emissions
, THENuse filter
to extract rows with year == 1988
, and without missing codes, THEN use select
to drop the year
variable, Then use rename
to change the variable entity
to country
, THEN assign the output to emissions_1988
.
per_capita_co2_emissions
?Start with emissions_1988
, THEN use slice_max
to extract the 15 rows with the per_capita_co2_emissions
, THEN assign the output to max_15_emitters
.
max_15_emitters <- emissions_1988 %>%
slice_max(per_capita_co2_emissions, n = 15)
per_capita_co2_emissions
?Start with emissions_1988
, THEN use slice_min
to extract the 15 rows with the per_capita_co2_emissions
, THEN assign the output to min_15_emitters
.
min_15_emitters <- emissions_1988 %>%
slice_min(per_capita_co2_emissions, n = 15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
, THEN assign the output to max_min_15
.max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15
to 3 file formats.max_min_15 %>% write_csv("max_min_15.csv")
max_min_15 %>% write_tsv("max_min_15.tsv")
max_min_15 %>% write_delim("max_min_15.psv", delim = "|")
max_min_15_csv <- read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|")
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
, and max_min_15_psv
.setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences? NO.
country
in max_min_15
for plotting and assign to max_min_15_plot_data
.Start with emissions_1988
, THEN use mutate
to reorder country
according to per_capita_co2_emissions
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
mapping = aes(x = per_capita_co2_emissions, y = country)) +
geom_col() +
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 1988",
x = NULL,
y = NULL)
ggsave(filename = "preview.png",
path = here("_posts", "2021-03-02-reading-and-writing-data"))
preview.png
to the yaml check at the top of this file.preview: preview.png